Automatic Milking Systems (AMS)
Since the 1970s, much research effort has been expended in investigating methods to alleviate time management constraints in conventional dairy farming, culminating in the development of the automated voluntary milking system (AMS).
Voluntary milking allows the cow to decide its own milking time and interval, rather than being milked as part of a group at set milking times. AMS requires complete automation of the milking process, as the cow may elect to be milked at any time during a 24 hour period.
The milking unit comprises a milking machine, a teat position sensor, a robotic arm for automatic teat-cup application and removal, and a gate system for controlling cow traffic. The cows are permanently housed in a barn, and spend most of their time resting or feeding in the loose-stall area.
When the cow elects to enter the milking unit (due to highly palatable feed that she finds in the milking box), a cow ID sensor reads an identification tag on the cow and passes the cow ID to the control system. If the cow has been milked too recently, the automatic gate system sends the cow out the unit. If the cow may be milked, automatic teat cleaning, milking cup application, milking, and teatdipping takes place. As an incentive to attend the milking unit, concentrated feedstuffs needs to be fed to the cow in the milking unit.
The barn may be arranged such that access to the main feeding area can only be obtained by passing the milking unit. This lay out is referred to as forced cow traffic.
The innovative core of the AMS system is the robotic manipulator in the milking unit. This robotic arm automates the tasks of teat cleaning and milking attachment and removes the final elements of manual labour from the milking process. Careful design of the robot arm and associated sensors and controls allows robust unsupervised performance, such that the farmer is only required to attend the cows for condition inspection and when a cow has not attended for milking.
Typical capacity for a AMS is 50-70 cows per milking unit. AMS usually achieve milking frequencies between 2 and 3 times per day, so a single milking unit handling 60 cows and milking each cow 3 times per day has a capacity of 7.5 cows per hour. This low capacity is convenient for lower-cost design of the robot arm and associated control system, as a window of several minutes is available for each cow and high-speed operation is not required.
AMS units have been available commercially since the early 1990s, and have proved relatively successful in implementing the voluntary milking method. Many of the research and developments have taken place in the Netherlands. The most farms with AMS are located in the Netherlands and Denmark.
Advantages
Elimination of labour - The farmer is freed from the milking process and associated rigid schedule, and labour is devoted to supervision of animals, feeding, etc.
Increased milking frequency - Milking frequency may increase to three times per day, however typically 2.5 times per day is achieved. This may result in less stress on the udder and increased comfort for the cow, as on average less milk is stored. Higher frequency milking increases milk yield per cow, however much of this increase is water rather than solids.
Perceived lower stress environment - There is a perception that elective milking schedules reduce cow stress. An objective study found no decrease in stress between automatic and conventional milking.
Herd Management - The use of computer control allows greater scope for data collection. Such data allows the farmer to improve management through analysis of trends in the herd, for example response of milk production to changes in feedstuffs. Individual cow histories may also be examined, and alerts set to warn the farmer of unusual changes indicating illness or injury. Information gathering provides added value for AMS, however correct interpretation and use of such information is highly dependent on the skills of the user.
没有评论:
发表评论