Structure of the industry
While most countries produce their own milk products, the structure of the dairy industry varies in different parts of the world. In less developed countries the producer generally sells directly to the public, whereas in major milk-producing countries most milk is distributed through wholesale markets. In Ireland and Australia, for example, farmers' co-operatives own many of the large-scale processors, while in the United States farmers and processors do business through individual contracts.
As in many other branches of the food industry, dairy processing in the major dairy producing countries has become increasingly concentrated, with fewer but larger plants operated by fewer workers. This is notably the case in the United States, Europe, Australia and New Zealand.
Plants producing liquid milk and products with short shelf life, such as yogurts, creams and soft cheeses, tend to be located on the outskirts of urban centres close to consumer markets. Plants manufacturing items with longer shelf life, such as butter, milk powders, cheese and whey powders, tend to be situated in rural areas closer to the milk supply.
Most large processing plants tend to specialise in a limited range of products. Exceptionally, however, large plants producing a wide range of products are still common in Eastern Europe, a holdover from the former centralized, supply-driven concept of the market.
As processing plants grow fewer and larger, they tend to acquire bigger, more automated and more efficient equipment. While this technological tendency keeps manufacturing costs lower, the need for long-distance transportation often increases the environmental impact.
Operation of the dairy farm
See dairy farming and dairy cattle for more information.
When it became necessary to milk larger numbers of cows, the cows would be brought to a shed or barn that was set up with bails (stalls) where the cows could be confined while they were milked. One person could milk more cows this way, as many as 20 for a skilled worker. But having cows standing about in the yard and shed waiting to be milked is not good for the cow, as she needs as much time in the paddock grazing as is possible. It is usual to restrict the twice-daily milking to a maximum of an hour and a half each time. It makes no difference whether one milks 10 or 1000 cows, the milking time should not exceed a total of about three hours each day for any cow.
As herd sizes increased there was more need to have efficient milking machines, sheds, milk-storage facilities (vats), bulk-milk transport and shed cleaning capabilities and the means of getting cows from paddock to shed and back.
Farmers found that cows would abandon their grazing area and walk towards the milking area when the time came for milking. This is not surprising as, in the flush of the milking season, cows presumably get very uncomfortable with udders engorged with milk, and the place of relief for them is the milking shed.
As herd numbers increased so did the problems of animal health. In New Zealand two approaches to this problem have been used. The first was improved veterinary medicines (and the government regulation of the medicines) that the farmer could use. The other was the creation of veterinary clubs where groups of farmers would employ a veterinarian (vet) full-time and share those services throughout the year. It was in the vet's interest to keep the animals healthy and reduce the number of calls from farmers, rather than to ensure that the farmer needed to call for service and pay regularly.
Most dairy farmers milk their cows with absolute regularity at a minimum of twice a day, with some high-producing herds milking up to four times a day to lessen the weight of large volumes of milk in the udder of the cow. This daily milking routine goes on for about 300 to 320 days per year that the cow stays in milk. Some small herds are milked once a day for about the last 20 days of the production cycle but this is not usual for large herds. If a cow is left unmilked just once she is likely to reduce milk-production almost immediately and the rest of the season may see her dried off (giving no milk) and still consuming feed for no production. However, once-a-day milking is now being practised more widely in New Zealand for profit and lifestyle reasons. This is effective because the fall in milk yield is at least partially offset by labour and cost savings from milking once per day. This compares to some intensive farm systems in the United States that milk three or more times per day due to higher milk yields per cow and lower marginal labor costs.
Farmers who are contracted to supply liquid milk for human consumption (as opposed to milk for processing into butter, cheese, and so on—see milk) often have to manage their herd so that the contracted number of cows are in milk the year round, or the required minimum milk output is maintained. This is done by mating cows outside their natural mating time so that the period when each cow in the herd is giving maximum production is in rotation throughout the year.
Northern hemisphere farmers who keep cows in barns almost all the year usually manage their herds to give continuous production of milk so that they get paid all year round. In the southern hemisphere the cooperative dairying systems allow for two months on no productivity because their systems are designed to take advantage of maximum grass and milk production in the spring and because the milk processing plants pay bonuses in the dry (winter) season to carry the farmers through the mid-winter break from milking. It also means that cows have a rest from milk production when they are most heavily pregnant. Some year-round milk farms are penalised financially for over-production at any time in the year by being unable to sell their overproduction at current prices.
Artificial insemination (AI) is common in all high-production herds.
While most countries produce their own milk products, the structure of the dairy industry varies in different parts of the world. In less developed countries the producer generally sells directly to the public, whereas in major milk-producing countries most milk is distributed through wholesale markets. In Ireland and Australia, for example, farmers' co-operatives own many of the large-scale processors, while in the United States farmers and processors do business through individual contracts.
As in many other branches of the food industry, dairy processing in the major dairy producing countries has become increasingly concentrated, with fewer but larger plants operated by fewer workers. This is notably the case in the United States, Europe, Australia and New Zealand.
Plants producing liquid milk and products with short shelf life, such as yogurts, creams and soft cheeses, tend to be located on the outskirts of urban centres close to consumer markets. Plants manufacturing items with longer shelf life, such as butter, milk powders, cheese and whey powders, tend to be situated in rural areas closer to the milk supply.
Most large processing plants tend to specialise in a limited range of products. Exceptionally, however, large plants producing a wide range of products are still common in Eastern Europe, a holdover from the former centralized, supply-driven concept of the market.
As processing plants grow fewer and larger, they tend to acquire bigger, more automated and more efficient equipment. While this technological tendency keeps manufacturing costs lower, the need for long-distance transportation often increases the environmental impact.
Operation of the dairy farm
See dairy farming and dairy cattle for more information.
When it became necessary to milk larger numbers of cows, the cows would be brought to a shed or barn that was set up with bails (stalls) where the cows could be confined while they were milked. One person could milk more cows this way, as many as 20 for a skilled worker. But having cows standing about in the yard and shed waiting to be milked is not good for the cow, as she needs as much time in the paddock grazing as is possible. It is usual to restrict the twice-daily milking to a maximum of an hour and a half each time. It makes no difference whether one milks 10 or 1000 cows, the milking time should not exceed a total of about three hours each day for any cow.
As herd sizes increased there was more need to have efficient milking machines, sheds, milk-storage facilities (vats), bulk-milk transport and shed cleaning capabilities and the means of getting cows from paddock to shed and back.
Farmers found that cows would abandon their grazing area and walk towards the milking area when the time came for milking. This is not surprising as, in the flush of the milking season, cows presumably get very uncomfortable with udders engorged with milk, and the place of relief for them is the milking shed.
As herd numbers increased so did the problems of animal health. In New Zealand two approaches to this problem have been used. The first was improved veterinary medicines (and the government regulation of the medicines) that the farmer could use. The other was the creation of veterinary clubs where groups of farmers would employ a veterinarian (vet) full-time and share those services throughout the year. It was in the vet's interest to keep the animals healthy and reduce the number of calls from farmers, rather than to ensure that the farmer needed to call for service and pay regularly.
Most dairy farmers milk their cows with absolute regularity at a minimum of twice a day, with some high-producing herds milking up to four times a day to lessen the weight of large volumes of milk in the udder of the cow. This daily milking routine goes on for about 300 to 320 days per year that the cow stays in milk. Some small herds are milked once a day for about the last 20 days of the production cycle but this is not usual for large herds. If a cow is left unmilked just once she is likely to reduce milk-production almost immediately and the rest of the season may see her dried off (giving no milk) and still consuming feed for no production. However, once-a-day milking is now being practised more widely in New Zealand for profit and lifestyle reasons. This is effective because the fall in milk yield is at least partially offset by labour and cost savings from milking once per day. This compares to some intensive farm systems in the United States that milk three or more times per day due to higher milk yields per cow and lower marginal labor costs.
Farmers who are contracted to supply liquid milk for human consumption (as opposed to milk for processing into butter, cheese, and so on—see milk) often have to manage their herd so that the contracted number of cows are in milk the year round, or the required minimum milk output is maintained. This is done by mating cows outside their natural mating time so that the period when each cow in the herd is giving maximum production is in rotation throughout the year.
Northern hemisphere farmers who keep cows in barns almost all the year usually manage their herds to give continuous production of milk so that they get paid all year round. In the southern hemisphere the cooperative dairying systems allow for two months on no productivity because their systems are designed to take advantage of maximum grass and milk production in the spring and because the milk processing plants pay bonuses in the dry (winter) season to carry the farmers through the mid-winter break from milking. It also means that cows have a rest from milk production when they are most heavily pregnant. Some year-round milk farms are penalised financially for over-production at any time in the year by being unable to sell their overproduction at current prices.
Artificial insemination (AI) is common in all high-production herds.
没有评论:
发表评论